Редактирование: ГОС
Материал из eSyr's wiki.
Внимание: Вы не представились системе. Ваш IP-адрес будет записан в историю изменений этой страницы.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 1: | Строка 1: | ||
- | == Пределы == | ||
- | |||
- | [http://www.wolframalpha.com/input/?i=lim_{n-%3Einfty}+(sqrt(n^2+%2B+n)-n) Wolfram: lim_{n->infty} (sqrt(n^2+n)-n)] | ||
- | |||
- | <math>\lim_{n \to \infty} \sqrt{n^2 + n} - n = \lim_{n \to \infty} \frac{(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n)}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}+n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}}+1} = \frac{1}{2}</math> | ||
- | |||
== Интегралы == | == Интегралы == | ||
- | <math> \int tg^2(x) dx | + | <math> \int tg^2(x) dx </math> |
- | + | <math>\frac{1}{2}</math> | |
- | <math | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
== Решение линейного однородного дифференциального уравнения с постоянными коэффициентами == | == Решение линейного однородного дифференциального уравнения с постоянными коэффициентами == | ||
Строка 64: | Строка 14: | ||
Находим корни этого уравнения: | Находим корни этого уравнения: | ||
- | <math>\lambda = 1, \lambda = | + | <math>\lambda = 1, \lambda = 2, \lambda = -1</math> |
<math> y_1 = e^{t}, </math> | <math> y_1 = e^{t}, </math> | ||
- | <math>y_2 = e^{ | + | <math>y_2 = e^{2t},</math> |
<math> y_3 = e^{-t}</math> | <math> y_3 = e^{-t}</math> |