ГОС
Материал из eSyr's wiki.
(→Решение линейного однородного дифференциального уравнения с постоянными коэффициентами) |
(→Пределы) |
||
(3 промежуточные версии не показаны) | |||
Строка 3: | Строка 3: | ||
[http://www.wolframalpha.com/input/?i=lim_{n-%3Einfty}+(sqrt(n^2+%2B+n)-n) Wolfram: lim_{n->infty} (sqrt(n^2+n)-n)] | [http://www.wolframalpha.com/input/?i=lim_{n-%3Einfty}+(sqrt(n^2+%2B+n)-n) Wolfram: lim_{n->infty} (sqrt(n^2+n)-n)] | ||
- | <math>\lim_{n \to \infty} \sqrt{n^2 + n} - n = \lim_{n \to \infty} \frac{(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n)}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 | + | <math>\lim_{n \to \infty} \sqrt{n^2 + n} - n = \lim_{n \to \infty} \frac{(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n)}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}+n} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}}+1} = \frac{1}{2}</math> |
== Интегралы == | == Интегралы == | ||
Строка 11: | Строка 11: | ||
<math>\int cos^3(x) dx = \int (cos^2(x)cos(x)) dx = \int (1 - sin^2(x)) d(sinx) dx = \{t = sin(x)\} = \int 1-t^2 dt = t - \frac{t^3}{3} + C = \{t = sin(x)\} = sin(x)-\frac{sin^3(x)}{3} + C</math> | <math>\int cos^3(x) dx = \int (cos^2(x)cos(x)) dx = \int (1 - sin^2(x)) d(sinx) dx = \{t = sin(x)\} = \int 1-t^2 dt = t - \frac{t^3}{3} + C = \{t = sin(x)\} = sin(x)-\frac{sin^3(x)}{3} + C</math> | ||
- | <math>\int (3x + 1)^3 dx = \frac{1}{ | + | <math>\int (3x + 1)^3 dx = \frac{1}{3} \int (3x + 1)^3d(3x + 1) = \frac{1}{3} \frac{(3x + 1)^4}{4} + C</math> |
<math>\int cos(3x) dx = \frac{1}{3} \int cos(3x)d(3x) = \frac{1}{3}sin(3x) + C </math> | <math>\int cos(3x) dx = \frac{1}{3} \int cos(3x)d(3x) = \frac{1}{3}sin(3x) + C </math> | ||
Строка 34: | Строка 34: | ||
=== Гармонический ряд === | === Гармонический ряд === | ||
Доказать расходимость гармонического ряда: | Доказать расходимость гармонического ряда: | ||
- | <math>\sum_{n= | + | <math>\sum_{n=1}^\infty \frac{1}{n}</math> |
Покажем по Критерию Коши: | Покажем по Критерию Коши: | ||
Строка 75: | Строка 75: | ||
Решение уравнения (1) -- это линейная комбинация <math>y_i, i=1,2,3</math>: | Решение уравнения (1) -- это линейная комбинация <math>y_i, i=1,2,3</math>: | ||
- | <math>y = C_1y_1 + | + | <math>y = C_1y_1 + C_2y_2 + C_3y_3</math> |
Текущая версия
Содержание |
[править] Пределы
Wolfram: lim_{n->infty} (sqrt(n^2+n)-n)
[править] Интегралы
Считаем используя правило:
f = log5(x)
dg = dx
[править] Ряды
[править] Гармонический ряд
Доказать расходимость гармонического ряда:
Покажем по Критерию Коши:
Не выполняется, если взять
Так как критерий Коши это необходимое и достаточное условие, то делаем вывод о расходимости ряда.
[править] Знакопеременные ряды
Исследовать на абсолютную и условную сходимость ряд
Здесь можно воспользоваться признаком Лейбница, который говорит, что ряд если an = ( − 1)nbn,an > = 0 и bn монотонно стремится к 0, начиная с некоторого номера n0, то ряд сходится
Последовательность монотонно стремится к 0, поэтому по признаку Лейбница сходится.
Но модуль этого ряда -- это гармонический ряд (то есть расходится). Поэтому сходимость исследуемого ряда условная.
[править] Решение линейного однородного дифференциального уравнения с постоянными коэффициентами
y''' + 2y''' − y' − 2y = 0 (1)
Решение этого уравнения ищется в виде y = eλt
Подставляем этот y в уравнение (1), сокращаем на eλt. Получаем характеристическое уравнение:
λ3 + 2 * λ2 − λ − 2 = 0
Находим корни этого уравнения: λ = 1,λ = − 2,λ = − 1
y1 = et,
y2 = e − 2t,
y3 = e − t
Решение уравнения (1) -- это линейная комбинация yi,i = 1,2,3:
y = C1y1 + C2y2 + C3y3