МОТП, Контрольная 2013
Материал из eSyr's wiki.
Содержание |
Задача 1
Рассматривается задача классификации объектов на два класса по одному признаку. Предполагается, что значение признака x для объектов из классов K1, K2 распределено по закону Рэлея:
Пусть β1 = 7.3 β2 = 1.3. Требуется найти области значений признака x, соответствующие отнесению объектов в каждый из двух классов байесовским классификатором, если априорные вероятности классов равны, соответственно, 0.3 и 0.7.
Решение
По определению баесовского классификатора:
где x - классифицируемый пример, a(x) - классификатор, Y - множество классов (K1,K2), λy - цена ошибки (λ1 = λ2), Py - вероятность появления объекта класса y (априорная вероятность), py(x) - плотность распределения класса y в точке x.
Построим множество, на котором Для этого решим уравнение:
Таким образом, при x > 0.541 классификатор отнесёт объект в класс K2, при x < 0.541 - в класс K1
Задача 2
Имеется задача распознавания с 4-мя классами и одним признаком. Предполагается, что с использованием метода "Линейная машина" для каждого класса найдены следующие линейные разделяющие функции:
f1(x) = 4.8 − 2.3x
f2(x) = − 4.6 − 2.6x
f3(x) = 4.5 − 2.3x
f4(x) = 4.2 − 0.4x
Требуется изобразить на графике области, соответствующие отнесению к каждому из четырех классов.
Решение
Для нахождения требуемых областей, решим системы неравенств:
Таким образом, объект будет отнесён в класс 1 при
Аналогично:
Oбъект будет отнесён в класс 2 при
, поэтому никакой объект не будет отнесён к классу 3.
Oбъект будет отнесён в класс 4 при
Задача 3
Предполагается, что линейный дискриминант Фишера используется для распознавания объектов из двух классов по паре признаков x1 и x2. Требуется вычислить вектор, задающий направление перпендикуляра к прямой, разделяющей объекты двух классов:
Класс 1:
Класс 2:
Решение
Перпендикуляр к прямой, разделяющей объекты двух классов, описывается уравнением:
где - матожидания объектов каждого класса, а Σi - ковариационная матрица.
Посчитаем матождиания:
Посчитаем ковариационные матрицы:
Ответ:
Задача 4
При проведении выборов на ряде избирательных участков производятся фальсификации результатов голосования. Посылка наблюдателя на такой участок предотвращает фальсификации. Пусть известно несколько точек ROC-кривой для метода идентификации "грязных" участков. Требуется определить оптимальную стратегию распределения наблюдателей по участкам и максимальный выигрыш относительно стратегии равномерного распределения по участкам, если всего участков 1000, наблюдателей --- 200 и доля "грязных" участков --- 30%. При этом под оптимальностью понимается максимизация количества честных участков.
Чувствительность | Ложная тревога |
0.86 | 0.11 |
0.90 | 0.31 |
0.92 | 0.32 |
Решение:
Чувствительность - отношение числа верно распознаных примеров позитивного класса к общему размеру класса:
Ложная тревога - отношение числа ошибочно распознанных примеров позитивного класса к размеру негативного класса:
Позитивный исход - идентификация "грязного" участка.
В случае стратегии равномерного распределения наблюдателей по всем участкам, на выбранном участке будет наблюдатель с вероятностью . Всего чистых участков:
Рассмотрим первый алгоритм.
300 = TP + FN
700 = TN + FP
Решая систему, получаем, что TP = 258, FP = 77, FN = 42, TN = 623. Всего метод возвращает 258+77 = 335 результатов. Наблюдателей в распоряжении - меньше, поэтому распределим их равномерно среди участков, которые вернул метод. Вероятность того, что наблюдатель попадёт на произвольны среди выбранных классификатором участков, равна , поэтому среди выбранных участков наблюдатели попадут в среднем на участка, и всего чистыми будут 700 + 154 = 854 участка. Выигрыш составил 854 − 760 = 94 участка.
Аналогично для других точек.
Задача 5
адана таблица совместных значений прогнозируемой переменной Y и объясняющей переменной X. Требуется вычислить ковариацию между Y и X, коэффициент корреляции между Y и X, коэффициенты одномерной линейной регрессии.
Y | 5.9 | 4.0 | 2.4 | 1.7 |
X | 8.3 | 7.6 | 3.0 | 2.3 |
Решение
Воспользуемся методом наименьших квадратов для расчета коэффициентов одномерной линейной регрессии Y = a + bX:
Получаем линейную регрессию: Y = 0.479 + 0.57X
Математические основы теории прогнозирования
Материалы по курсу
Билеты (2009) | Примеры задач (2009) | Примеры задач контрольной работы (2013) | Определения из теории вероятностей