Методы Оптимизации, Теормин
Материал из eSyr's wiki.
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Календарь
пт | пт | пт | пт | пт | |
Февраль
| 08 | 15 | 22 | 29 | |
Март
| 06 | 13 | 20 | 27 | |
Апрель
| 04 | 11 | 18 | 25 | |
Май
| 02 | 16 | 23 |
Материалы
Упражнения
||
Задачи | Определения | Утверждения | Теоремы
||
Теормин | Обозначения
Введение в теорию сложности
Индивидуальная и массовая задачи, кодировка задачи, алгоритм решения массовой задачи, временная сложность алгоритма.
Методичка, стр. 4-8
Массовая задача Π:
- список свободных параметров;
- формулировка свойств, которым должно удовлетворять решение задачи.
Π есть множество индивидуальных задач . Индивидуальная задача получается, если всем параметрам присвоить конкретные значения.
Пусть Σ — конечный алфавит, а Σ * — множество слов в этом алфавите. Отображение e: называется кодировкой задачи Π.
Алгоритм A решает массовую задачу Π, если для любой индивидуальной задачи :
- A применим к I, то есть останавливается за конечное число шагов
- A дает решение I
Кодировка задачи P — такое отображение , обладающее следующими свойствами:
- Возможность однозначно декодировать, то есть у двух различных ИЗ не может быть одинаковых кодировок.
- e,e − 1 — полиномиально вычислимы
- Кодировка не избыточна, то есть для любой другой кодировки e1, удовлетворяющей 1 и 2 условиям справедливо:
Язык массовой задачи — это множество правильных слов, то есть слов, соответствующих ИЗ, имеющим положительный ответ(подразумевается задача распознавания):
Язык алгоритма — множество слов, принимаемых A, то есть таких, на которых алгоритм останавливается в состоянии qY, что соответсвует "да":
Алгоритм A решает массовую задачу Π, с кодировкой e, если L(e,Π) = L(A)
Число шагов алгоритма A для входа — это tA(s).
Временная сложность .
Задачи распознавания свойств. Классы P и NP.
Методичка, стр. 8-11
Задача распознавания свойств -- массовая задача, предполагающая ответ "да" или "нет", в качестве своего решения.
- D(Π) -- множество всех возможных значений параметров массовой задачи.
- Y(Π) -- множество всех индивидуальных задач, ответом на которые является "да".
Класс полиномиально разрешимых задач (P) -- это такие задачи, временная сложность алгоритма решения которых ограниченна полиномом:
- такой, что A решает массовую задачу Π с кодировкой e
- -- полином такой, что
Примеры неполиномиальных задач:
- алгоритмически неразрешимые задачи: такая, что A не применим к I, например,
- 10-я проблема Гильберта: по данному многочлену g с целыми коэффициентами выяснить, имеет ли уравнение g = 0 целочисленное решение
- задачи, для которых длина записи выхода превышает любой наперед заданный полином от длины входа
- найти все маршруты в задаче коммивояжёра
Класс недетерменированно полиномиальных задач (NP) -- это такие задачи, для которых существует алгоритм решения на недерменированной машине Тьюринга:
- для НДМТ такой, что решает массовую задачу Π с кодировкой e
- -- полином такой, что
Теорема об экспоненциальной временной оценке для задач из класса NP.
Методичка, стр. 11
Для любой существует ДМТ A, решающая ее с не более чем экспоненциальной временной сложностью: .
Класс co-NP. Пример задачи, допускающей хорошую характеризацию. Доказательство утверждения о взаимоотношении классов NPC и co-NP.
Методичка, стр. 12-14
Дополнительная задача к массовой задаче Π -- задача, получаемая из Π путем введения альтернативного вопроса. То есть если в Π спрашиваем "верно ли x", то в спрашиваем "верно ли, что "
Класс co-P --
- co-P = P.
Класс co-NP -- .
- co-NP = NP пока не удалось ни доказать, ни опровергнуть, но это вряд ли верно.
Массовая задача Π допускает хорошую характеризацию, если
- пример такой задачи -- это задача определения простоты числа.
Массовая задача Π' с кодировкой e' полиномиально сводится к задаче Π с кодировкой e, если любая индивидуальная задача может быть сведена за полиномиальное от её длины время к некоторой задаче с сохранением ответа.
Массовая задача Π называется NP-полной (универсальной), если
- принадлежит классу NP:
- любая задача из NP полиномиально сводится к Π:
Класс NPC (NP-complete) -- множество всех NP-полных задач.
Критерий NP-полноты. Д-во NP-полноты задачи ЦЛН
Методичка, стр. 15
Критерий NP-полноты. Массовая задача Π NP-полна тогда и только тогда, когда она принадлежит классу NP и к ней полиномиально сводятся все задачи класса NP.
Д-во NP-полноты задачи 3-выполнимость. NP-трудные задачи
Методичка, стр. 17-18
Класс NP-трудных задач содержит:
- задачи распознавания свойств Π, для которых
- не доказано, что
- задачи оптимизации, для которых соответствующие задачи распознавания свойств
- любые задачи, к которым сводятся по Тьюрингу хотя бы одна NP-полная задача
Взаимоотношение классов P, NP и NPC, NP и co-NP. Класс PSPACE
Легко показать, что . Рабочая гипотеза, что .
Если для некоторой NP-полной задачи Π дополнительная к ней задача , то NP = co-NP
Класс PSPACE массовых задач -- класс алгоритмов, требующих не более, чем полиномиальной памяти.
Гипотеза. (то есть, не факт, что вложение строгое, но скорее всего так). При этом NP-полные, NP-трудные, NP-эквивалентные задачи
Псевдополиномиальные алгоритмы. Пример для задачи о рюкзаке
Псевдополиномиальный алгоритм - полиномиальный алгоритм, проявляющий экспоненциальный характер только при очень больших значениях числовых параметров.
Пусть M(I) -- некоторая функция, задающая значение числового параметра индивидуальной задачи I. Если таких параметров несколько, в качестве M(I) можно взять или максимальное, или среднее значение, а если задача вовсе не имеет числовых параметров (например, раскраска графа, шахматы и т.п.), то M(I) = 0. Алгоритм называется псевдополиномиальным, если он имеет оценку трудоемкости Tmax(I) = O(p( | I | ,M(I))), где -- некоторый полином от двух переменных.
Сильная NP-полнота. Теорема о связи сильной NP-полноты задачи с существованием псевдополиномиального алгоритма ее решения
Полиномиальное сужение массовой задачи Π -- множество таких индивидуальных задач I, числовые параметры которых не превосходят полинома от длины входа:
Массовая задача Π называется сильно NP-полной, если её полиномиальное сужение является NP-полным. Примеры:
- задача выполнимости, задача 3-выполнимости -- совпадают со своими полиномиальными сужениями
- задача булевых линейных неравенств -- ВЫП сводится к её полиномиальноу сужению, где числовые параметры (правая часть неравенств) линейны.
- задача о целочисленном решении системы линейных уравнений -- , т.к. БЛН сводится к ней
- задача коммивояжёра (TSL) -- совпадает со своим сужением
Задача о рюкзаке -- слабо-NPC.
Теорема. Если NP не совпадает с P, то ни для какой сильно-NPC задачи не существует псевдополиномиального решения.
Определение -приближенного алгоритма и полностью полиномиальной приближенной схемы (ПППС). Связь между существованием ПППС и псевдополиномиальностью
Методичка, стр. 22-24
Задача дискретной оптимизации -- решение каждой индивидуальной задачи является произвольная реализация оптимума , где
- SΠ(I) -- область допустимых значений дискретной переменной z
- fΠ -- целевая функция задачи оптимизации
- max вообще говоря вполне может быть заменён на min
Алгоритм A называется приближённым алгоритмом решения массовой задачи Π, если для любой задачи он находит точку , лежащую в области допустимых значений, принимаемую за приближённое решение
Утверждение Если , то ни для какой константы C > 0 не существует полиномиального приближённого алгоритма решения задачи о рюкзаке с оценкой
Приближённый алгоритм A решения массовой задачи Π называется -приближённым алгоритмом решения задачи, если
Теорема об отсутствии ПППС для задач оптимизации, соответствующих сильно NP-полным задачам распознавания
Методичка, стр. 24
Теорема Если для Π оптимизации
- соответствующая ей задача распознавания свойств является сильно NP-полной
- существует полином
то при условии, что для Π не существует ПППС
Основы линейного программирования
Определение озЛП. Принцип граничных решений. Алгебраическая и битовая сложность ЛП. Результаты о сложности для задач, близких к ЛП
ЛП (линейное программирование) -- теория, приложения и методы решения системы линейных неравенств с конечным числом неизвестных : , существует ли , удовлетворяющий данной системе линейных неравентсв
озЛП (основная задача линейного программирования) : найти такой вектор -- решение задачи линейного программирования , максимизирующее линейную функцию
Утверждение (принцип граничных решений). Если озЛП имеет решение, то найдется такая подматрица AI матрицы A, что любое решение системы уравнений AIx = bI реализует максимум c(x).
Алгебраическая сложность -- количество арифметических операций.
Битовая сложность -- количество операций с битами. Битовая сложность задач ЛП, ЛН полиномиальна.
Вопрос о существовании алгебраически-полиномиального алгоритма для ЛП остается открытым.
Геометрическое описание симплекс-метода
(Копипаста из [ru.wiki], там-же есть хорошая иллюстрация.)
Симплекс-метод -- метод решения озЛП.
Каждое из линейных неравенств в ограничивает ограничивает полупространство в соответствующем линейном пространстве. В результате все неравенства ограничивают некоторый многогранник (возможно, бесконечный), называемый также полиэдральным конусом. Уравнение W(x) = c, где W(x) — максимизируемый (или минимизируемый) линейный функционал, порождает гиперплоскость L(c). Зависимость от c порождает семейство параллельных гиперплоскостей. Тогда экстремальная задача приобретает следующую формулировку — требуется найти такое наибольшее c, что гиперплоскость L(c) пересекает многогранник хотя бы в одной точке. Заметим, что пересечение оптимальной гиперплоскости и многогранника будет содержать хотя бы одну вершину. Принцип симплекс-метода состоит в том, что выбирается одна из вершин многогранника, после чего начинается движение по его ребрам от вершины к вершине в сторону увеличения значения функционала. Когда переход по ребру из текущей вершины в другую вершину с более высоким значением функционала невозможен, считается, что оптимальное значение c найдено.
Теорема о границах решений задач ЛП с целыми коэффициентами
Методичка, стр. 28-29
Δ(D) = max | det(D1) | , где D1 -- квадратная подматрица D
Теорема (о границах решений). Если задача озЛП размерности (n, m) с целыми коэффициентами разрешима, то у нее существует рацональное рашение x * в шаре: и
Теорема о мере несовместности систем линейных неравенств с целыми коэффициентами
Методичка, стр. 29
-- -приближенное решение системы ЛН, если
- в строчной записи:
- в матричной записи: , где e -- вектор-столбец из единиц
Теорема. Если система линейных неравенств имеет приближенное решение (), то эта система разрешима, то есть имеет точное решение.
Описание метода эллипсоидов
- Методичка, стр. (30-32) 32-33
- вики:Метод эллипсоидов
Решает задачу линейного программирования за полиномиальное число шагов.
Суть алгоритма в том, чтобы окружить данный многогранник эллипсоидом, а затем постепенно сжимать этот эллипсоид; оказывается, на каждом этапе объем эллипсоида уменьшается в константное число раз.
Лемма1. Если система совместна, то в шаре найдется ее решение.
Таким образом получаем, что если система совместна, то эта лемма позволяет локализовать хотбы бы 1 из ее решений
Введем функцию невязки в точке x -- t(x) = maxi((Ax)i − bi). Точка -- это центр шара E0. Если , то x0 -- решение. Если это не так, то возмемем s: , значит x0 не удовлетворяет s-ому неравенству системы. Всякий вектор x, удовлетворяющий неравенству s, должен лежать в полупространстве . Пересечение этого полупространства с нашей сферой дают полуэлипсоид. Вокруг получившегося полуэлипсоида описываем новую сферу и повторяем алгоритм заново.
Теория двойственности ЛП
- Методичка, стр. 35-36
- http://www.mathelp.spb.ru/book1/lprog5.htm
Каждой задаче линейного программирования можно определенным образом сопоставить некоторую другую задачу (линейного программирования), называемую двойственной или сопряженной по отношению к исходной или прямой задаче.
Двойственной задачей к задаче линейного программирования на максимум (в каноническом виде можно записать: ) называется задача линейного программирования на минимум:
Утверждение Двойственная задача к двойственной задаче совпадает с прямой задачей линейного программирования.
Теорема (двойственности ЛП). Задача ЛП разрешима тогда и только тогда, когда разрешима двойственная к ней. При этом в случае разрешимости оптимальные значения целевых функций совпадают:
Сведение озЛП к однородной системе уравнений с огрничением x>0
Методичка, стр 36-37
Утверждение. Задача ЛП оптимизации эквивалентна решению системы линейных неравенств.
Утверждение. Задача ЛП оптимизации эквивалентна решению системы линейных уравнений в неотрицательных переменных.
Утверждение. Задача ЛП эквивалентна поиску неотрицательного ненулевого решения однородной системы линейных уравнений.
Идея метода Кармаркара
- Методичка, стр 37-38
- http://logic.pdmi.ras.ru/~yura/modern/02seminar.pdf
Метод Кармаркара.
- На основании предыдущего утверждения (см. вопрос о сведении озЛП к однородной системе), есть возможность свести задачу ЛП к поиску решения СЛАУ , которая, в свою очередь, сводится к однородной СЛАУ:
- Введем функцию Кармаркара: , где
- N -- число столбцов в P
- K -- число строк в P
- -- строки матрицы P
- применяя теорему о мере несовместимости и алгоритм округления можно показать, что для решения достаточно найти такой , для которого
- при этом можно так же показать полиномиальный алгоритм поиска данного приближения, который в курсе не рассматривается.
Следствия систем линейных неравенств. Афинная лемма Фаркаша (без доказательства)
- Методичка, стр. 34-35
- http://imcs.dvgu.ru/lib/nurmi/finmath/node41.html
Система линейных неравенств называется разрешимой, если
Линейное неравенство является следствием разрешимой системы ЛН , если для всех x, для которых выполняется сама система, выполняется и следствие:
Афинная лемма Фаракша. Линейное неравентсво является следствием разрешимой в вещественный переменных ЛН , тогда и только тогда, когда существует :
Лемма Фаркаша о неразрешимости
Методичка, стр. 35
Лемма. Система динейный неравенсив неразрешима тогда и только тогда, когда разрешима система:
- (нулевой вектор)
Элементы математического программирования
Классификация задач математического программирования. Преимущества выпуклого случая
Методичка. стр 39-41
Задача математического программирования (ЗМП) -- по заданной f(x) найти , то есть:
- найти -- решение
- f * = f(x * ) -- (оптимальное) значение целевой функции f(x)
- где X -- допустимое множество (множество ограничений)
Классификация проводится по типу допустимого множества X:
- дискретные (комбинаторные) -- множество X конечно или счётно
- целочисленные --
- булевы --
- непрерывные --
- бесконечномерные
- функциональные
Задачи оптимизации бывают:
- условные --
- безусловные --
Классификация по свойствам целевой функции: выпуклость, гладкость и т.п.
Классификация по результату:
- локальная оптимизация
- глобальная оптимизация
Выпуклое множество (вики) -- такое множество, которое содержит вместе с любыми двумя своими точками еще и отрезок, их соединяющий.
Функция f называется выпуклой, если её надграфик (множество точек над графиком: ) является выпуклым множеством.
Утверждение. Любая точка локального минимума выпуклой функции является точкой её глобального минимума.
Преимущества выпуклых задач:
- применим метод эллипсоидов, причем сложность - полиномиальна
- для острых задач (целевая функция убывает в окрестности минимума не медленнее некоторой линейной функции) можно получить точное решение
Формула градиентного метода в задаче безусловной минимизации
Методичка. стр 41-42
Основная идея:
- берем некоторое начальное значение
- итеративно вычисляем градиент целевой функции
- двигаемся в обратном направлении
- и так постепенно приходим к (локальному) минимуму функции
Формула градиентного метода -- xt + 1 = xt − αtgradf(xt), где αt -- шаговый множитель:
- пассивный способ: {αt} выбирается заранее
- адаптивный способ: {αt} выбирается в зависимости от реализующейся xt
- метод скорейшего спуска --
- метод дробления (деления пополам) -- если f(xt + 1) > f(xt), то возвращаемся к шагу t с новым значением αt = αt / 2
Идея метода Ньютона
Методичка, стр. 43
Метод ньютона -- это фактически градиентный спуск с адаптивыным коэффициентом, который берется, как 2 производная целевой функции.
Реально можно вывести формулу Ньютона из разложения по Тейлору до 2 производной в окрестности точки минимума.
Формула метода Ньютона в задаче безусловной минимизации
Методичка. стр 43
Формула Ньютона -- , при этом начальное приближение должно находиться достаточно близко к искомой точке минимума.
Метод ньютона имеет квадратичную скорость сходимости: , где Q - некоторая константа
Ограничения:
- невырожденность матрицы 2 производных (гессиана)
- близость начального приближения к точке минимума ()
Идея метода штрафов
Методичка. стр 44
Смысл метода в том, чтобы свести задачу условной оптимизации к задаче безусловной оптимизации, то есть избавится от ограничения на область, в которой ищем минимум.
Для этого вводится так называемая функция штрафа, которая равна нулю в той области, в которой мы "условно оптимизируем" целевую функцию, а в остальных точках добавляет к значению целевой функции некоторое значение (собственно, штраф).
Пример. Пусть область задаётся следующим образом: , где g(x) -- некоторая функция. Тогда рассмотрим задачу безусловной минимизации целевой функции f(x) со штрафом: , где C -- некоторая константа [??], а -- параметр штрафа
Способы решения переборных задач
Методы глобальной минимизации
Методичка. стр. 52 (52-55)
Метод ветвей и границ для глобальной минимизации Липшицевых функций
Методичка. стр. 54
Метод ветвей и границ для ЦЛП. Различные стратегии метода
Методичка. стр. 57
Идея метода ветвей и границ. Пример для задачи БЛП
Методичка. стр. 59
Теорема оптимальности для разложимых функций
Методичка. стр 60
Опр. Функция f называется разделяемой на f1 и f2, если она представима в виде:
f(x,y) = f1(x,f2(y)) Опр. Функция f называется разложимой на f1 и f2, если:
- она разделяема на f1 и f2
- f1 монотонно не убывает по последнему аргументу
Теорема оптимальности для разложимых функций
minx,y(f(x,y)) = minx(f1(x,miny(f2(y))))
Указанная теорема используется для уменьшения размерности оптимизационных задач и в методе ДП.
Применение метода динамического программирования для понижения размерности разложимой оптимизационной задачи
Методичка. стр. 62
Метод динамического программирования для БЛП с неотрицательными коэффициентами
Методичка. стр. 63-64
Неотсортировано
- Полиномиальный алгоритм округления ε1-приближенного решения системы линейных неравенств
- Понятие о временной сложности алгоритмов
- Понятие о недетерминированно-полиномиальных задачах
- Оценка сложности метода эллипсоидов ε2-приближенного решения озЛП